Top Quark Production Asymmetry at the Tevatron

Dan Amidei University of Michigan

top A_{FR} in NLO QCD

- $C = -1 + C = +1 \rightarrow A_C$
- at Tevatron this is an A_{FB}

• measure in
$$\Delta y = y_t - y_{\bar{t}}$$

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

inclusive NLO prediction (QCD+EWK)

$$A_{FB} = (6.6 \pm 2.0 + 2.0?)\%$$

measured

$$A_{FB} \sim (19 \pm 4)\%$$

- new work on SM calculation
 - EWK, denominators
 - t-tbar P_t parton showers
 - NNLO is coming
- many interesting NP models
 - s-channel, t-channel

top ∆y asymmetry in I+jets

similar analyses

- subtract backgrounds
- kinematic reco of top 4-vectors
- SVD unfold

CDF

- arXiv:1211.1003
- 9.4 fb⁻¹, 2653 evnts 530 bkg
- differential xsec in Δy
- $-A_{fb}$ parton = $(16.2 \pm 4.7)\%$

• D0

- PRD84, 112005 (2011)
- 5.4 fb-1, 1581 evnts 455 bkg
- A_{fb} parton = $(19.6 \pm 6.5)\%$

comparison of tevatron top $\Delta y A_{FB}$ results Sept. 2012

 including private average simple weighted, neglect correlations

• expected precision w 9 fb⁻¹ for all measurements < 3%.

- rapidity dependence
 - $\text{ fit } \chi^2_{\text{p.d.f.}} = 1.0$
 - slope > 3σ from 0
 - PE how often α_{NLO} ≥ α_{data}
 - use background sub data
 - $p_{NLO} = 0.00892$

- mass dependence
 - slope is $>3\sigma$ from 0
 - fit $\chi^2_{p.d.f.} = 0.3$
 - $p_{NLO} = 0.00646$

differential top cross-section in production angle $\cos \theta^*$

full reconstruction in tt frame

- study production angle directly
- SM $\sim 1 + \cos^2\theta$
- NLO adds asymmetry
- s-channel models add cosθ term
- t-channel leading term $1/(1-\cos\theta)$
- some benchmark models on right

new CDF analysis in I+jets

- 9.4 fb⁻¹ 3864 evnts, 1026 bkg
- reconstruct $cos(\theta^*)$
- decompose in 8 Legendre moments
- no binning, no regularization
- estimate moments response from MC
- invert response, multiply by bkg subtracted moments
- integrate series over 10 bins

study the scattering angle directly

moments

- SM agreement except L = 1
- $a_1 = 0.44 \pm 0.12$ measured 0.15±.05 expected
- excess linear term in xsec
- benchmark Z' model is disfavored

- contribution of moments to A_{fb}
 - independent asymmtries add!
 - A_{FB} is entirely due to linear term

single lepton in I+jets

lepton

- well measured
- follows top quark
- A(qy_I) robust asymmetry probe
- correlation with A(∆y) sensitive to polarization

pioneered by D0

- PRD84, 112005 (2011)
- 5.4 fb-1, 1581 evnts 455 bkg

data A_{fb}

- $(14.2 \pm 3.8)\%$ obs
- (0.8 ± 0.6)% pred

parton A_{fb}

- $(15.2 \pm 4.0)\%$ obs
- (2.1 ± 0.1)% pred

D0 dilepton rapidity asymmetries

- arXiv:1207.0364
- 5.4 fb⁻¹, 2 OS leptons (M.ne.Z) + met + 2 jets + Ht
- $649 \text{ events bkg} = 244 \pm 18$
- no tt reconstruction: it's the leptons

				1
	Raw	Unfolded	Predicted	•
A^{ℓ}	$2.9 \pm 6.1 \pm 0.9$	$2.5 \pm 7.1 \pm 1.4$	4.7 ± 0.1	$A_{\mathbb{C}}$
$A_{ m FB}^{\ell^+}$	$4.5 \pm 6.1 \pm 1.1$	$4.1 \pm 6.8 \pm 1.1$	4.4 ± 0.2	+ charge leptons
$A_{\mathrm{FB}}^{\ell^-}$	$-1.2 \pm 6.1 \pm 1.3$	$-8.4 \pm 7.4 \pm 2.4$	-5.0 ± 0.2	- charge leptons
A_{FB}^{ℓ}	$3.1 \pm 4.3 \pm 0.8$	$5.8 \pm 5.1 \pm 1.3$	4.7 ± 0.1	both charges (q.η)
$A^{\ell\ell}$	$3.3 \pm 6.0 \pm 1.1$	$5.3 \pm 7.9 \pm 2.9$	6.2 ± 0.2	Δy leptons
A_{CP}^{ℓ}	$1.8 \pm 4.3 \pm 1.0$	$-1.8 \pm 5.1 \pm 1.6$	-0.3 ± 0.1	CP violating

inclusive lepton asymmetry at CDF

- study q·y_I
 - "asymmetric part" A_I(qy_I)
 - symmetric part is model indpndnt
- ansatz $\mathcal{A}(qy_l) = a \tanh \left[\frac{1}{2}qy_l\right]$
 - well fit in benchmark models
 - OctetA heavy, unpolarized
 - OctetsLR light, polarized
 - extrapolates into forward region
- technique
 - integrate with symmetric part
 - gets full distribution + total asymmetry
 - works well in benchmarks
- measurement
 - 9.4 fb⁻¹ 3864 evnts, 1026 bkg

$$A = 0.094 \pm 0.024^{+0.022}_{-0.018}$$

combined lepton asymmetry

D0 combination

$$-A_{FB}^{I}DIL = (5.8 \pm 5.3) \%$$
 pred $(4.7 \pm 0.1)\%$

- $-A_{FB}^{I}$ I+jets = (15.2 ± 4.0)% pred (2.1 ± 0.1)%
- D0 combination $A_{FB}^{I} = (11.8 \pm 3.2)\%$
- CDF I+jets

$$-A_{FB}^{I}$$
 I+jets = (9.4 ± 3.1) % pred (3.8 ± 0.3) %

- informal combination
 - $-A_{FB}^{I}$ = (10.5 ± 2.2)% exceeds SM predictions by 3-4 σ
- what do we expect for SM decays with measured A(Δy)?
- crude measure

$$\frac{A_{FB}^{l}}{A_{FB}^{\Delta y}}\Big|_{powheg} \times A_{FB}^{\Delta y}\Big|_{data} = 0.46 \times (18.7 \pm 3.7) = 8.6 \pm 1.7$$

would be interesting to have a real prediction

p_t (tt) dependence of the asymmetry at CDF

- examine at obs bkg-sub level
 - pythia and powheg follow expected trend
 - CDF 8.7 fb⁻¹ l+jets
 - data above predictions
- normalize predictions to the data
 - independent asymmetries add!
 - scale each bin by inclusive A_{fb}
- good agreement with either Powheg and Pythia
- excess asymmetry is P_t independent?

p_t (tt) dependence of the asymmetry at CDF

- examine at obs bkg-sub level
 - pythia and powheg follow expected trend
 - CDF 8.7 fb⁻¹ l+jets
 - data above predictions
- normalize predictions to the data
 - independent asymmetries add!
 - scale each bin by inclusive A_{fb}
- good agreement with either Powheg and Pythia
- excess asymmetry is P_t independent?

summary

- inclusive asymmetry in agreement CDF+D0
 - informal combo $A^{tt}_{FB} \sim (18.7 \pm 3.7)\%$
 - eventual combined $\delta A_{FB} \sim 3.0\%$
- linear M_{tt} and Δy dependence of A_{fb} in tt system (CDF)
 - slopes 3σ from zero and 2σ larger than NLO prediction
- dσ/dcos(θ*) (CDF)
 - decompose in legendre moments
 - excess linear term
- measured 2-3 σ asymmetry in the lepton alone (D0 +CDF)
 - slightly high for measured $A(\Delta y)$?
- p_t(tt) dependence agrees with Poweg/Pythia + p_t independent offset
- some tension between D0 dileptons and everything else
- picture still incomplete, much work still to do

additional material

lepton asymmetry method

$$\mathcal{S}(qy_{l}) = \frac{N(qy_{l}) + N(-qy_{l})}{2}$$

$$\mathcal{A}(qy_{l}) = \frac{N(qy_{l}) - N(-qy_{l})}{N(qy_{l}) + N(-qy_{l})}$$

$$N(qy_{l} > 0) = \int_{0}^{\infty} dqy_{l} \left[\mathcal{S}(qy_{l}) \times (1 + \mathcal{A}(qy_{l})) \right]$$

$$N(qy_{l} < 0) = \int_{0}^{\infty} dqy_{l} \left[\mathcal{S}(qy_{l}) \times (1 - \mathcal{A}(qy_{l})) \right]$$

$$A_{FB}^{lep} = \frac{N(qy_{l} > 0) - N(qy_{l} < 0)}{N(qy_{l} > 0) + N(qy_{l} < 0)}$$

$$= \frac{\int_{0}^{\infty} dqy_{l} \left[\mathcal{A}(qy_{l}) \times \mathcal{S}(qy_{l}) \right]}{\int_{0}^{\infty} dqy_{l} \mathcal{S}(qy_{l})}$$

lepton asymmetry method

lepton asymmetries

- lepton follows top
 - independent of asymmetry mechanism if P=0
- reconstructed lepton η is systematically unencumbered
- "bias free" asymmetry indicator

single lepton

$A_{FB}^{l^{\pm}} = \frac{N_{l^{\pm}}(\eta > 0) - N_{l^{\pm}}(\eta < 0)}{N_{l^{\pm}}(\eta > 0) + N_{l^{\pm}}(\eta < 0)}$

$$A_{FB}^{l} = \frac{N_{l}(Q \cdot \eta > 0) - N_{l}(Q \cdot \eta < 0)}{N_{l}(Q \cdot \eta > 0) + N_{l}(Q \cdot \eta < 0)} \qquad A_{CP}^{l} = \frac{N_{l^{+}}(\Delta \eta > 0) - N_{l^{-}}(\Delta \eta < 0)}{N_{l^{+}}(\Delta \eta > 0) + N_{l^{-}}(\Delta \eta < 0)}$$

two lepton

$$A^{ll} = \frac{N(\Delta \eta > 0) - N(\Delta \eta < 0)}{N(\Delta \eta > 0) + N(\Delta \eta < 0)}$$

$$A_{CP}^{l} = \frac{N_{l^{+}}(\Delta \eta > 0) - N_{l^{-}}(\Delta \eta < 0)}{N_{l^{+}}(\Delta \eta > 0) + N_{l^{-}}(\Delta \eta < 0)}$$

lepton A_{FB} performance in the W+1 jet sample (CDF)

	$ \eta_{lep} < 0.75$	$ \eta_{lep} \ge 0.75$
Observed Data	0.059 ± 0.001	0.124 ± 0.002
SM Prediction	0.063 ± 0.005	0.134 ± 0.008
Data Minus Prediction	-0.004 ± 0.005	-0.010 ± 0.008

	$p_T < 60 \text{GeV}/c$	$p_T \ge 60 { m GeV}/c$
Observed Data	0.083 ± 0.001	-0.009 ± 0.004
SM Prediction	0.089 ± 0.004	-0.001 ± 0.013
Data Minus Prediction	-0.006 ± 0.004	-0.008 ± 0.014

Historical perspective

